
I AD-R171 561 R PROGRANNING ENVIRONMENT FOR PRALLEL VISION /
ALGORITNNSCU) ROCHESTER UNIY NY DEPT OF COMIPUTER

I SCIENCE C BROWN RUG 86 ETL7-S433 DRC76-85-C-90SI
7UNCLASSIFIED F/B 9/2 ML

I= fllE

jj31.

11.6

%%.

miii.-
-1.22

jjjjj-jjjI -A

MICROCOPY RESOLUTION TEST CHART

6"4n ,t.

$,, %

t.:.,_.,,. ,, .. :., .,..,.,. ,,,.;...-., ; , . .. :'.... ,.. .. ,.. ,

ETL 0433

A programming environment
for parallel vision algorithms

In Christopher Brown LJIC
E 0LECTEn

I University of Rochester
Computer Science Department

SRochester, New York 14627

August 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Prepared for

U.S. ARMY CORPS OF ENGINEERS "
ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VIRGINIA 22060- 5546

and

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VIRGINIA 22209- 2308

86 9 10 040
• *="""""'' """e'

=
"""''i . "''"'""' " " " ° "" ", .".- d' ,'',,A W-, .* - " "" "4" °." " -" -". ~-, - a" " "

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE / b ,' - -

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704 0188

_E p Date Jun30 1986

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassif led
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distributionis unlimited.

4- PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

ETL-0433

6&. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

University of Rochester U.S. Army Engineer Topographic Labs

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Computer Science Department Research Institute
Rochester, New York 14627 Fort Belvoir, VA 22060-5546

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA ISTO DACA76-85-C-0001

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Boulevard ELEMENT NO. NO NO ACCESSION NO

Arlington, VA 22209-2308 62301E

11 TITLE (Include Security Classification)

A PROGRAMMING ENVIRONMENT FOR PARALLEL VISION ALGORITHMS

12. PERSONAL AUTHOR(S)

Brown, Christopher
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Annual FROM tO862 1986 August 24
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Parallel processors

09 02 Butterfly computer
17 08 Commuter xiczon

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

During the first year of the award period, the Computer Science Department of the
University of Rochester has pursued three main lines of work: systems support algorithms,
Butterfly programming environment, and vision applications. Today's multiprocessor
computer architectures are not efficiently programmed or even conceptualized with
standard computer languages, and their operating systems and debugging tools are also

challengingly different. The University of Rochester is doing work in the area of tools
for controlling large-grain parallelism, as one finds in a distributed multiprocessor

application like the Autonomous Land Vehicle, or in tightly coupled processors like the

Hypercube or the Butterfly Parallel Processor.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

rUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0] DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Rosalene M. Holecheck (202) 355-2769 ETL-RT

DD FORM 1473, 84 MAR 83 APR edition may be used untr exhausted SEC;.R17Y CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

. % k % .% = " % '% , '% ". % .. " -. , . ° ",'= ". . " ". -, % -, . % ". . " . . ', % ' "= *. % ". • .. ' '. '. % , -. .%

i7i

Annual Technical Report
DARPA Contract DACA76-85-C-0001

A Programming Environment for Parallel Vision Algorithms
Christopher Brown, P.I.
University of Rochester

11 August 1986

1. Overview
During the first year of the award period, the Computer Science Department

of the University of Rochester has pursued three main lines of work: systems
support algorithms, Butterfly programming environment, and vision applications.
The work under the Strategic Computing grant meshes nicely with the work done
under our DARPA Image Understanding grant The IU grant supports more
fundamental work whose technological implications are explored under the SC
grant. The SC grant is mainly concerned however with rendering today's
Multiprocessor computer architectures useful. Often work is jointly funded, and
the references at the end of this report includes some work done with the help of
other funding. Some of this related work is described briefly below.

Today's multiprocessor computer architectures are not efficiently programmed
or even conceptualized with standard computer languages, and their operating
systems and debugging tools are also challengingly different. Of all the SC Vision
contractors. Rochester seems to be doing the most work in the area of tools for
controlling large-grain parallelism, as one finds in a distributed multiprocessor
application like the ALV, or in tightly coupled processors like the Hypercube or
the Butterfly Parallel Processor.

The references show two new technical report series. The Butterfly Project
Repon and Hierarchical Process Composition Project Report series document our
work on the Butterfly Parallel Processor and in the HPC computational model.

2. The Butterfly and the Uniform System
The University of Rochester operates three Butterfly configurations with 3, 16

and 120 processors. These machines were procured with the help of an NSF
Coordinated Experimental Research grant. Each processor consists of a 68000-
based microcomputer connected to a bit-slice microengine. The microengine in
turn is connected to local memory (one megabyte per processor), local i/o
(synchronous and asynchronous serial lines, plus an optional multibus), and a
high-speed switch. The microengine maps all memory references made by the []
68000 into either local memory, local i/o, microengine control registers or (via the
switch) some other processor's local memory. Remote memory references take two
to four microseconds in the absence of contention, compared to half a
microsecond for local references. Alternatively, the 68000 can direct its
microengine to execute DMA transfers between local and remote memory at 4 Codes

/or

AVi .. .

' e .,., % o ... -,=.,..,'.
. ' .. , . .

. .,'.'. ..- ,.,'.' ,:.',-',.-"-"."." . -'- .,-".-". -'.". ,-0, ' .,

2

megabytes/second. The operating system supports multitasking on each node and
provides a variety of microcode-assisted message passing and synchronization
primitives.

For much of our Butterfly vision work we use the Uniform 'System, a
software package that restricts the generality of the machine a great deal but
simplifies coding. When a iJniform System program is initialized it starts a special
process called a task demon on every processor on the machine. It then allocates
12 megabytes of memory (taking equal amounts from the local memory of each
processor) and arranges for all processes to map that memory into the same place
in their address spaces. This makes it possible for them to pass pointers to each
other. The original process can call generator functions to place task descriptions
on a global agenda, where they are picked up and executed by the task demons.
Tasks can call generators recursively. The generators are typically used to simulate
parallel FOR loops. For example, a task description might consist of a work
function and an index; task demons would atomically read and decrement the
index and call the work function with the result of the read. Uniform System
applications tend to have a SIMD flavor, but the system differs from true SIMD
machines in that the "single instruction" performed can be an arbitrary function
call.

3. Systems Support Algorithms
The work by Sanchis [1986] and Newman-Wolfe [1985; 19861 is actually

theoretical computer science brought to bear on MIMD architectures. This
research has contributed algorithms for enhancing reliability and reducing
contention on the butterfly switch, and on several other topologies that exist in
current MIMD computers.

Liudvikas Bukys has provided vital system support and applications coding
throughout the funding period. His contributions include network software,
operating system installations and updates, a fast union-find algorithm useful in
vision applications for region-growing and edge-linking, and general expertise with
all levels of the Butterfly system.

4. Systems Research and Programming Environments
Our systems research has concentrated on three main areas: Basic building

blocks, Programming environments, and Programming models. [BPR series, HPC
series, and papers by LeBlanc, Scott, Finkel et al, Friedberg, Ohkami and
Baldwin].

The basic building blocks are individual pieces of work that represent
improvements to the existing Butterfly systems. They can be incorporated in later
software systems or can be pursued for their own interest without the commitment
to integrate them into a permanent system. Our work has included: Uniform
System modifications, a parallel first fit memory allocation, measurement of
Chrysalis primitives, SAR management to increase the number of available

3

processes, and the Modula-2 and C + + languages as natural extensions to the C
environment.

A viable parallel programming environment is a basic goal of our SC Vision
effort. To date we have worked on: a parallel file system, parallel compilation,
debugging tools, and have developed and commissioned the SMP library and the
LYNX programming language.

4.1. Structured Message Passing
SMP is a model of parallel programs that consists of process families whose

members are created and destroyed together, and interprocess communication,
within a family, based on asynchronous message-passing according to a fixed
communication topology. There is a dynamic hierarchy of process families. SMP
has been implemented [Leblanc, BPR-8]. The goals of SMP are: A user-level
programming environment independent of the number of physical processors,
Reduced coding overhead associated with creating a set of processes,
Communication connections between processes according to a given
interconnection pattern and naming scheme, Investigation of the utility of
asynchronous message-passing as the primary form of interprocess communication

- within the Butterfly, and Comparison of message-passing with shared memory for
various applications.

SMP offers a message-based alternative to the Uniform System package. Its
heavyweight process model complements the lightweight process model of
Modula-2. It gives us additional experience with a dynamic hierarchy of processes
that use asynchronous message-passing.

The user interface is a handful of subroutine calls.

/* Create a family of communicating processes */
SMP_family_id SMPSpawn (topology, codef, argvf, data)

/* Destroy all processes in a family */
void SMP_Kill (family-id)

/* Send a message to a set of processes in the same family /
int SMP_Send (family, dests, numdest, buffer, size)

/* Receive a message from a process /
int SMP..Receive (family, srcs, numsrcs, buffer, size, sender)

Additional library routines can be used to create predefined interconnection
topologies or query a particular topology.

The Butterfly implementation of SMP message-passing is as follows: message
buffers are implemented using shared memory objects; buffers are written by a

-I

4

single process (the sender), but read by many; a count of intended recipients is
associated with each message; message buffers are dynamically mapped into
address spaces using a SAR cache; In our experience so far, SMP is easy to learn,
its performance is very good, and the SAR cache idea is useful in practice. In the
future we plan to explore new applications, to experiment with message-passing
implementations, to integrate SMP with Modula-2, and to let SMP cooperate with
Instant Replay.

4.2. Instant Replay
Debugging parallel programs is difficult. There are multiple threads of

control, there is non-repeatable behavior due to timing variations, there is wide-
ranging granularity of communication, and a lack of multiprocess debugging tools.
In this work we assume: programs are communication-intensive, there is no direct
microcode support for debugging, and programs use full Chrysalis capabilities.
Our goal is to develop a flexible monitoring system that provides Instant ReplaN of
parallel programs with minimal impact on program performance, minimal
information collected, distributed data collection, independence from particular
machine models, for both loosely-coupled and tightly-coupled domains Instant
Replay has been implemented [Leblanc and Mellor-Crummey, in preparation].

The crucial observation is that data values in a shared object depend only
upon: initial values in the object, the deterministic nature of the processes
operating on the object, the underlying virtual machine, the inputs to processes
from the external environment, and the relative order of operations on the object.
Thus Instant Replay saves the relative order of events during program execution
rather that the data associated with each event. Each time a shared object changes
state, it is assigned a new version number. Each time a shared object is accessed,
that fact is recorded on an object history tape. Each process records the version
number of every shared object it accesses. For debugging, each process replays its
own history tape. Each process that attempts to access a shared object must wait
until the correct version of the object is available.

A prototype SMP implementation with Instant Replay has been built. The
relevant actions for Send Message are: find buffer, Acquire Write Lock (buffer),
copy message into buffer, set number of recipients, Release Write Lock (buffer).
For Receive Message they are: Acquire Read Polling Lock (iterator), poll
incoming message buffers, copy message into user area, Release Polling Lock,
Acquire Write Lock (buffer), decrement number of recipients, Release Write Lock
(buffer). In our experience so far, Instant Replay adds minimal overhead to the
running time of a program. It is a practical tool that does not produce excessive
contention. There are some locks involved, and it is their placement that the
efficiency of the system resides. The rules are simple: lock concurrent structures
(not shared structures), and optimize locks on idempotent (read) operations. In
the future we shall work on: code efficiency improvements, proof of correctness,
empirical studies with different programming models, automatic instrumentation,
integration into programming environment, exploring effect on programming

.,? ,: .7' ,'., -. ',.' - '..' - -' .' -,'/ ',, , ..- ' ., '.,.' .. , .-.- ? . ': -,' .-; .?...... .-- .- .- - .- , ,. -:....- -?.- .- .- .

5

cycle.

4.3. LYNX
The Butterfly implementation of LYNX is complete. A partial

implementation was made publically available on 15 March. Exception handling
was installed on 12 June. Pointers were installed on 14 July. The exception-
handling features resemble those of Ada. The pointer facilities allow LYNX
processes to share access to blocks of Butterfly memory. Exceptions can be bound
to Chrysalis throw codes in such a way that throws in external C routines
propagate back into LYNX programs as bona-fide exceptions.

Library packages have been written to support: storage of links in the
Chrysalis name table, access to environment variables, pointer-based shared object
support, screen-oriented output.

Utility programs provide access to files on the host machine and support
interactive manipulation (from the Butterfly shell) of name-table links.

We have begun actively to encourage the growth of a user community. We
have built a distributed game-tree searching program and are in the process of
benchmarking it. We should be able to report on the results, together with further
applications, in the fall of 1986.

>From an initial time of 5.9 milliseconds (best case), we have reduced the cost
of message passing to 2.4 ms per remote operation. We are considering protocol
optimizations that should bring the cost to well below 2 ms.

A detailed language rationale for LYNX will appear in the December 1986
issue of IEEE Transactions of Software Engineering. A technical note on the
LYNX type-checking mechanism will appear in the same journal at a later date.
A paper comparing the Butterfly version of LYNX with two earlier
implementations will be presented at the 1986 International Conference on Parallel
Processing. Earlier versions of the language rationale and of the implementation
paper were published as Rochester Technical Reports and Butterfly Project
Reports. The implementation paper will appear in the Department's 1986-87
Research Review. A LYNX reference manual was published as BPR 7.

4.4. PSYCHE
We have begun work on an operating system for the Butterfly, under the

joint direction of Profs. LeBlanc and Scott. The project is known as Psyche, and
has as its goal the development of systems software to support a wide variety of
parallel programming paradigms.

Psyche will
(1) be more convenient than Chrysalis,
(2) support multiple users on a single Butterfly,

Z,.'..- :.7; "-d

6

(3) permit experimentation with shared memory, message passing, and options in
between, and

(4) permit well-structured communication between pieces of an application that
use different paradigms.

We are convinced that no one model of parallelism will prove appropriate for
all applications. Some algorithms are easier to implement with fully-shared
memory. Others are most clearly conceived with message passing. Still others
need an option, such as monitors, that falls somewhere in-between.

A major thrust of our work so far has been the comparison of solutions to
common problems under various programming models (see, for example, BPR 3).
We are fortunate with the Butterfly to be using hardware that lacks a built-in bias
toward any one of these approaches. We hope with Psyche to exploit this lack of
bias to develop an operating system that allows each application, or part of an
application, to be written under the programming model most appropriate for its
own particular needs. We expect Psyche to provide simple, well-defined
mechanisms for interaction between pieces of code that employ different models.

The fundamental concept in Psyche is the realm. On the Butterfly, a realm
will be a memory object (or set of objects) with an associated protocol that governs
its access. There will be a many-to-many relationship between processes and
realms: each realm may be shared by an arbitrary number of processes and each
process may have access to an arbitrary number of realms. Psyche will provide
mechanisms for creating, destroying, and managing access to realms. In effect, it
will allow a program to bind access protocols and protection mechanisms to sets of
memory objects.

Examples of access protocols for realms include:
(1) Pure shared memory in the style of the BBN Uniform System. A single,

large, static realm would be shared by all processes. The access protocol
would permit unrestricted reads and writes of individaal memory cells.

(2) Connection-less message passing. Each message would be a separate realm.
To send a message one would make the realm accessible to the receiver and
(probably) inaccessible to the sender.

(3) Connection-based message passing, in the style of LYNX. Each
communication channel (link) would be accessible to two processes and
would contain buffers through which they could communicate.

(4) Monitors. Each realm would have access routines and a monitor lock. The
realm protocol would insist that the access routines acquire the monitor lock
before execution.

(5) Path expressions. Analogous to monitors, each realm would have access
routines and an access protocol that would enforce the ordering rules
described by path expressions.

:. . ,.. .: :/ ; -.: : . : ,. . -. . . .:. : . .. > .. ,: ; . .. ,;

". ., .7 . . ., " - .. _ ; ,. , . . ,t_ , " - ' " " ,? -: " - " " - i . . .

. a.. . . - ..

7

One major issue in the design of Psyche will be protocol enforcement. Our
goal is to make the probability of accidental misuse of a domain acceptably small.
We have no intention of making it impossible. Protection mechanisms at our
disposal include
(1) Manipulation of memory maps to make domains unaddressable.

(2) Manipulation of protection bits to make domains unreadable. unwritable, or
unexecutable.

(3) Modification of compilers to make inappropriate domain operations
unexpressible.

The first two options would be much more attractive in the presence of the
68020 Butterfly upgrade. In addition to the oft-cited advantages of increased
speed and hardware floating point, the 68020s would permit restarting of
instructions, allowing us to handle protection faults and implement virtual
memory.

4.5. CONSUL
The CONSUL project is an attempt to simplify the use of multi-processor

computers for general-purpose programming through automatic detection of
parallelism in programs. Current programming techniques for multi-processors
require programmers to worry about two related but distinct issues: how to
express a solution to their problem as a program, and how to partition this
program into parallel pieces. Multi-processor computers will never be as easy to
program as sequential ones until programmers are freed from the need to

parallelize programs manually. We believe that the best solution to this problem is
to develop compilers that will automatically detect and exploit parallelism in
programs that have not been explicitly parallelized by their authors. Unfortunately,
automatic parallelization is a difficult problem that has so far resisted any general
solution. One of the main reasons is that the source languages people are trying to
parallelize are inadequate. Standard imperative languages rely on side-effects to
maintain the state of a computation, a problem that is compounded by aliasing
(the same piece of state information can have many distinct names). These features
make imperative languages impossible to parallelize except in a few limited areas
(e.g., the extremely regular code found in scientific computations). Declarative
languages, which are generally free of side-effects and have a more tractable
mathematical foundation (important in reasoning about both programs written in
them and legal ways of compiling those programs), are more promising starting
points for automatic parallelization. Our research is thus focussed on the
compilation of a particular class of declarative language into a form that can be
efficiently executed on multi-processors such as the Butterfly.

In late 1985 we realized that {it constraint languages} were promising ones
with which to work. A constraint language is one in which programs consist of sets
of relations between inputs, outputs, and (possibly) intermediate values, such that
the relations hold if and only if the output values are correct for the inputs. Note

tI

tI

............................

8

that there is a close correspondence between constraint languages and logic
languages: any relation in a constraint program can be replaced by a predicate that
tests whether that relation holds, and any predicate in a logic program defines a
relation between its arguments. There is, however, an important qualitative
distinction between our prototype constraint language and other logic languages:
We provide a much richer set of primitive relations than other logic languages, in
the belief that doing so makes the expression of general algorithms and their
potential parallelism more natural. The cost of our richer set of primitives is a
more elaborate compiler, as discussed below.

The ultimate goal of our research is to show that constraint languages are a
practical tool for programming multi-processors containing several hundred
relatively powerful processors. Achieving this goal requires solving two key
problems. The first is to determine the features that a general purpose constraint
language should have; the second is to show that such a language can make
effective use of a parallel computer. During the Winter and Spring of 1986 we
defined a language called CONSUL that demonstrates our solution to the first
problem. We are now conducting a series of experiments intended to test a
primitive dialect of CONSUL on a variety of programs and to characterize the

* parallelism that it makes available in each. These experiments will support our
contention that CONSUL is suitable for general purpose programming, and will
direct us to the richest sources of parallelism in the language. A later phase of the
CONSUL project will address the second problem by developing compilers that
can exploit this parallelism on a real multi-processor (the Butterfly).

The formal foundation for CONSUL is axiomatic set theory. Thus the
fundamental data type is the set, and the fundamental operators are the logical
connectives and quantifiers. However, a number of abstractions are built into the
language to make it more palatable to programmers than raw set theory. In
particular, the built-in data types include familiar ones such as sequences, integers,
characters, et cetera. Each of these types can be given a set-theoretic definition,
but programmers generally need not be aware of it. One consequence of the
formal basis of CONSUL that can be important to programmers, however, is that
relations, being sets, can be treated as data, and vice versa. This feature allows the
language to include higher-order relations in a natural way. Each built-in data type
is associated with built-in relations that correspond to common operations for that
type. Thus CONSUL provides simple comparisons, arithmetic relations between
integers, and so forth as language "primitives". Again, the fact that these
operations are not really primitive to the underlying set theory is invisible to users.
The built-in relations can be composed into more complex ones using the logical
connectives "and". "or", and "not", with their standard meanings, and the
quantifier "for all". "For all" is particularly useful as a way of mapping relations
over sets in complex ways. (The existential quantifier is also available, but is
mainly used just to declare variables and their scopes.)

Over the past few months (Summer 1986) we have been developing a
software system that lets us estimate the parallelism available from CONSUL

,..-........................-...,..-,.,. -" ..

9

programs. This system consists of a crude interpreter and a compactor. The
interpreter's main purpose is to note when each relation in a CONSUL program
can be satisfied and what variables are defined in the course of doing so. This
information is written to a trace file, which is later compacted into a maximally
parallel form by the compactor. Because the traces are taken from actual
CONSUL programs in execution, the parallelism found by the compactor is
"oracular" (see Nicolau and Fisher, "Using an Oracle to Measure Parallelism in
Single Instruction Stream Programs", 14th ACM SIGMICRO Microprogramming
Workshop, Oct. 1981) in the sense that a real compiler could fully exploit it only if
it had perfect information about the object program's run-time behavior. Our
results thus indicate the upper bound on the parallelism that can be derived from
CONSUL programs. In the course of developing the interpreter (and programs to
run on it) we have also considerably refined our notion of the proper semantics for
CONSUL. For example, until early August the mathematical underpinnings of
CONSUL were only intuitively defined --- the decision to unify and formalize
them set-theoretically is a very recent one, whose full implications we are still
evaluating.

We expect to complete the analysis of the parallelism experiments by the end
of 1986. Starting in 1987, we will turn our efforts to compiling CONSUL into
some form that can execute on a Butterfly (at least initially, this form will be some
high-level language with its own Butterfly compiler, for example, Butterfly
Common Lisp, LYNX, or C). Designing the compiler will be a very challenging
project In designing CONSUL, we have deliberately avoided the semantic
compromises made to ease implementation in languages like Prolog. Thus the
theoretical complexity of solving the relations in a CONSUL program is worse
than in related languages. None the less, we expect that we can produce a running,
parallel implementation of CONSUL. Experience with Prolog (supported by our
own experiences as we begin to think about writing real CONSUL programs)
suggests that people write declarative programs in fairly stylized ways that do not
push the theoretical complexity limits of the solution process. Thus we do not
need to be unduly concerned about the complexity of executing a CONSUL
program. We believe that a "smart" compiler (in this case a "smart" compiler
means one with a good symbolic algebra facility) can compile out much of the
searching for solutions that current logic languages require. Finally, techniques for
satisfying constraints using only local information have been demonstrated (see
Steele, "The Definition and Implementation of a Computer Programming
Language Based on Constraints", Ph. D. Dissertation, MIT Dept. of Electrical
Engineering and Computer Science, Aug. 1980), and we hope to be able to adapt
these techniques for use in CONSUL.

10

5. Vision
Much of our vision work is supported under the DARPA Image

Understanding Program, but SC Vision is also a primary funding source for much
of our vision work. Papers in the references by Aloimonos, Ballard, Bandopadhay,
Brown, Cooper, Hinkelman, Hollbach, Narayanan, Sher, and Swain give details.

The work of two recently graduated Ph.D. students merits special mention.
Aloimonos' work has centered on the robust and reliable computation of intrinsic
images, or physical parameters of the scene. He has invented several new
techniques, and his method has been to add information sources rather than to
rely exclusively on apriori constraints (such as smoothness). His work has mainly
been in the domains of multiple frame vision (stereo, motion) and in texture.
Bandopadhay has also been working in the domain of motion. His work has been
to apply clustering to the motion segmentation and egomotion problem, and to
notice that proprioceptive feedback from tracking stationary points can work with
vision to make the egomotion calculations easier. This tracking work is the
scientific motivation for our robotic hardware, which consists of two cameras on a
"robot head". With this setup we hope to investigate real-time vision with the
Butterfly hardware.

5.1. BIFF: A Butterfly Vision Library

Tom Olson and Liud Bukys have constructed a parallel version of the IFF
vision library written at the University of British Columbia under the direction of
Prof. Havens. IFF is a file organization for images, and an associated set of image
processing and vision utilities, something like SPIDER or GIPSY. IFF programs
are written as UNIX filters, and the system uses UNIX pipes to concatenate
operations. This is a slow way to go about things but is very modular and good
for interactive use. BIFF, the parallel version, is much faster, both thirough
capitalizing on the innately parallel nature of many low-level vision operations,
and through use of the large memory on the individual butterfly nodes to achieve
"in-core" files that can be passed from process to process quickly through memory
mapping. We expect BIFF to be a useful tool and to expand in the future [Olson,
BPR in preparation].

5.2. Segmentation on the BBN Butterfly Multiprocessor

Tom Olson has constructed an advanced program under the Uniform System
to do segmentation. We are interested in the general problem of combining the
outputs of low-level vision processes to produce robust interpretations of large
classes of input images. In addition, we want solutions that make efficient use of
large-scale parallel hardware. In order to study these issues we have chosen a
particular well-studied problem (2-d segmentation) for implementation on the
BBN Butterfly Multiprocessor. To date we have been more concerned with
communications and systems aspects of the combination than with the
mathematical aspects of cooperating constraints or evidence combination.

4. - a - 7-.. -- 'W- -J W-V -TZ

11

Two features of the Uniform System are particularly important for the design
of our segmentation system. The first is that load balancing is stochastic; the
machine will be used most effectively if tasks are numerous and have small
execution times with low variance. The second is that critical data structures are
kept in a global shared memory which ignores the distinction between remote and
local memory. Since individual memories have limited bandwidth, it is advisable
to scatter heavily used data structures as randomly as possible across the shared
address space. Caching local copies of read-only data also helps.

5.2.1. The Segmentation Problem
The segmentation problem has a number of characteristics that make it a

good vehicle for studying integration strategies. It can be approached on many
levels, from low level (color, texture and gradient) to intermediate (shape) and
high level (semantic checking of region labels and geometric relationships). The
literature contains a large number of algorithms for segmenting based on this or
that low-level feature, most of which are relatively straightforward to implement.
This was important to us because we wanted to concentrate on systems and
integration problems rather than on developing innovative low-level processes.

5.2.2. Our Approach
Our program works by recursively splitting regions until all regions satisfy

some termination criteria. Users of the system must provide a set of functions
called experts which take as their argument some region and generate a proposed
segmentation of that region. The user also provides a reconciling function which
integrates a set of proposed segmentations into a single proposal, which the main
program then executes. Users are responsible for parallelizing their own functions.The main loop of the program can be summarized as follows:

agenda = original image
while (agenda is not empty)

parallel-for (every region on agenda)
parallel-for (every user-supplied expert)

apply the expert to generate a proposed segmentation
parallel-for (every region on agenda)

apply the reconciler to eliminate all but one proposal
if # proposals is zero, put the region on a terminal list
else execute the proposal and put results on agenda

end
end

'4

We claim that with minor changes a large class of currently used segmentation
algorithms can be fit into this model. Among its defects are that a) there is no
provision for merging and b) reasoning based on more than one region (eg based

" on connectivity) is forbidden. These restrictions are unfortunate, but they permit

* Pt
n. -

,4," '~

12

the top-level program to avoid many locking and concurrency control problems.
5.2.3. Progress to date

Our current implementation has only one expert function, a. grey-level
histogram splitter loosely based on PHOENIX, the multispectral segmentor of
Shafer and Kanadel. The process of generating a proposed segmentation breaks
down into the following stages :
1) compute the grey-level histogram of the image
2) apply heuristics to partition the histogram into a set of intervals
3) back-project the intervals onto the region to generate a set of bitmaps
4) perform binary-image smoothing on each bitmap to eliminate very small or

very thin regions
5) find four-connected regions in each bitmap and collect them into a list; this is

the proposal.
Stages-1, 3, and 4 have been made highly parallel, essentially by performing
parallel FOR loops over scan lines of the image and bitmaps. Stage 2 is serial but
depends only on the grey-scale range of the image, and is in practice negligible.
Stage 5 uses a serial sequential scan algorithm, applied in parallel over the set of
bitmaps; it accounts for most of the running time of the algorithm.

Communication between manager, experts and reconciler is through shared
memory. An expert is called on a region by the manager; it computes a proposed
segmentation and stores it into a field in the region descriptor. The reconciler is
called on a region and expects to find a (possibly null) list of proposals in the
region descriptor. It reduces the length of the list to one or zero and returns; the
manager then executes the remaining proposal, if any.

The manager and user functions are written in C under the Chrysalis
operating system, using the Uniform System library to implement parallel loops.
Users provide an initialized vector of pointers to the expert functions and the
reconciler. They may optionally edit the region descriptor to incorporate any
additional fields that they need. If the region descriptor is unchanged the manager
will not need to be recompiled, but relinking is always necessary.

The manager makes use of BIFF, a locally developed image processing
library for the Butterfly. In order to evaluate our parallelization efforts we use of
modified version of the Uniform System that provides real-time graphic feedback
on the status of the Butterfly processors (working, idle or blocked). The display
portion of the status monitor runs on a SUN workstation and communicates with
the Butterfly via TCP.

5.2.4. Experience
PARALLELIZATION - Our experience with the program described above

has been that Amdahl's Law applies with a vengeance; that is, any non-parallel
segment of the code quickly comes to dominate the running time of the system.

L-*-..-..- ~...

13

Many current blackboard designs view the blackboard as a server executing
requests made by independent, long-lived client processes, and we agree that this
model will be more manageable than ours for large systems. How should this
model be parallelized? Our experience suggests that parallelization across requests
will not be sufficient.

LOAD BALANCING - Sophisticated vision blackboards may offer to do
non-trivial computations for their clients (eg find convex hulls of point sets, as in
Stentz and Shafer2). At times, therefor, clients may be idle while the blackboard
computes, while at other times the blackboard may be idle waiting for new
requests. In a multiprocessor environment this may lead to an intolerable waste of
cycles. What can be done about this?

MODELS OF COMPUTATION - Answers to the questions above depend
heavily on what model of computation underlies the blackboard and its clients.
The cooperating sequential process model provides a clean way to express the
computation but in our opinion often fails to make efficient use of real parallel
hardware. The pseudo-SIMD model provided by the Uniform System can be
quite efficient (though it may not be extendable to large numbers of processors for
hardware reasons), but makes writing well-structured programs difficult. Is there
an intermediate solution, or can the defects of one of the approaches be remedied?

5.2.5. Future Work
The project described above has taught us quite a bit, and we intend to push

it somewhat further, at least to the point of incorporating more experts and a
nontrivial reconciling function. Ultimately, however, it is not the right kind of
structure for a complete vision system. Segmentation, as many people have
observed, is not a well-defined problem; you cannot say whether a given
segmentor works until you have specified what you want to do with its output.

We envision a segmentor that is an integral part of a system for constructing
intrinsic images. Segmentation could certainly use the outputs of e.g. depth maps,
since depth discontinuities should signal region boundaries; but preliminary
segmentations can also help identify places where the smoothness assumptions
used in many intrinsic image calculations break down. Our ideal system would
operate on stereo pairs of color images. Monocular processes would compute
color constancy images and perform preliminary segmentation into plain and
textured regions on the basis of color and brightness. The preliminary
segmentation would define areas over which smoothness could be assumed; the
smoothness assumption would then be used to constrain the stereo correspondance
search problem and for shape from texture and shading. Reconciling the stereo,
texture and shading images would give a depth map that could then be used to
refine the segmentation.

14

References

z Shafer, S. and T. Kanade. Recursive Region Segmentation by Analysis of
Histograms. Proc. IEEE IntL Conf on Acoustics, Speech, and Signal Processing,
Paris, France, 1982.

2 Stentz, A. and S. Shafer. Module Programmers Guide to Local Map Builder for

AL Van. CMU Computer Science Department, January 1986.

6. Massively Parallel Models

The connectionist approach to programming and conceptualizing a parallel
system has a powerful tool in the simulator that runs on the Butterfly [Fanty 1986].
An annotated bibliography of recent work is [Ballard, Brown, Dell, and Feldman
1985]. Some vision applications are under investigation using connectionist
models (see papers by Ballard in the references).

": 7. Conclusion

In the period covered by this progress report the University of Rochester has
gone a long way toward making the Butterfly Parallel Processor into a usable
engine for complex computations. We foresee that our software will be taken up
by other DARPA contractors with Butterfly or similar MIMD computers, and are
anxious to bring that about. Our work involves a symbiotic merging of results,
both from the literature and locally generated, from theory, artificial intelligence,
and systems. At Rochester we are growing slightly, largely in the systems area, but
in general are maintaining our relatively small size because we see the symbiosis is
working, and letting us move ahead quickly. We are not by any means a large
DARPA contractor in terms of money, but DARPA funding has been well-
leveraged with other awards, and has been vital to our ability to do work that we
believe is well-positioned scientifically and practically and that has a distinctive
stamp.

N

Publications Produced under DARPA Strategic
Computing Support, January 1985 -July 1986

Aloimonos, J., "Computing intrinsic images," Ph.D. thesis, Computer Science
Dept., U. Rochester, September 1986.

Aloimonos, J., "Determining the illuminant direction," forthcoming TR, Computer
Science Dept., U. Rochester, August 1986.

Aloimonos, J., "Shape and motion from contour, without point to point
correspondence: general principles," TR 173, Computer Science Dept., U.
Rochester, to appear, 1986; Proc., IEEE Computer Vision and Pattern Recognition,
Miami, FL, June 1986.

Aloimonos, J., "Structure from motion: I) optic flow vs. discrete displacements; and
II) Lower bound results," Proc., IEEE Computer Vision and Pattern Recognition,
Miami, FL, June 1986.

Aloimonos, J. and A. Bandopadhay, "Perception of structure from motion: Lower
bound results," TR 158, Computer Science Dept., U. Rochester, March 1985.

Aloimonos, J., A. Bandopadhay, and P. Chou, "On the foundations of trinocular
machine vision," Technical Digest, Topical Meeting of the Optical Society of
America, Lake Tahoe, April 1985.

Aloimonos, J. and A. Basu, "Determining the translation of a rigidly moving
surface, with correspondence," TR 176, Computer Science Dept., U. Rochester, to
appear, 1986; Proc., IEEE Computer Vision and Pattern Recognition Conf., Miami,
FL, June 1986.

Aloimonos, J., A. Basu, and C.M. Brown, "Coutour, shape and motion," Proc.,
DARPA Image Understanding Workshop, Miami, FL, December 1985.

Aloimonos, J. and P. Chou, "Detection of surface orientation and motion from
texture I: The case of planes," TR 161, Computer Science Dept., U. Rochester,
January 1985.

Aloimonos, J. and P. Chou, "Detection of surface orientation from texture," Optic
News, September 1985.

Aloimonos, J. and I. Rigoutsos, "Detection of 3-D motion without correspondence:
1) Planar surfaces: theory and experiments; H) Curved surfaces, theory," TR 178,
Computer Science Dept., U. Rochester, December 1985.

Aloimonos, J. and I. Rigoutsos, "Determining the 3-D motion of a rigid planar
patch without correspondence, under perspective projection," Proc., Canadian
Artificial Intelligence Conf., Montreal, 1986.

. .~~- .~.. ~ ~ * *~~~

Aloimonos, J. and I. Rigoutsos, "Determining 3-D motion of a rigid planar patch,
without correspondence, under perspective projection," Proc., IEEE Workshop on
Motion, Charleston, SC, May 1986.

Aloimonos, J. and I. Rigoutsos, "Determining 3-D motion of rigid surfaces without
correspondence," Proc., AAAI 1986, Philadelphia, PA, August 1986.

Aloimonos, J. and M.J. Swain, "Shape from texture," Proc., 9th Int. Joint Conf. on
Artificial Intelligence, Los Angeles, CA, 926-931, August 1985.

Ballard, D.H., "Cortical connections: Structure and function," Behavioral and
Brain Sciences 9,1,67-120, March 1986.

Ballard, D.H., "Form perception as transformation," TR 148, Computer Science
Dept, U. Rochester, January 1986.

Ballard, D.H., "Interpolation coding: a model for the representation of metric
information," TR 175, Computer Science Dept, U. Rochester, May 1986.

Ballard, D.H., "Task frames in visuo-motor coordination," Proc., 3rd IEEEWorkshop on Computer Vision, Bellaire, MI, October 1985.

Ballard, D.H., "Transformational form perception," to appear in book to be
published by Lawrence Erlbaum Assoc., 1986.

Ballard, D.H., C.M. Brown, G. Dell, and J.A. Feldman, "Rochester connectionist
papers, 1979-85," TR 172, Computer Science Dept., U. Rocheter, November 1985.

Ballard, D.H. and H. Tanaka, "Transformational form perception in 3D:

Constraints, algorithms, implementation," Proc., 9th Int. Joint Conf. on Artificial
Intelligence, Los Angeles, CA, 964-968, August 1985.

Ballard, D.H., S. Tsuji, H. Tanaka, and M. Curtiss, "Parallel polyhedral form
• perception," Proc., IEEE Conf. on Computer Vision and Pattern Recognition,

Spring 1985.

* Bandopadhay, A., "Constraints on the computation of rigid motion parameters
from retinal displacements," TR 168, Computer Science Dept., U. Rochester,
October 1985.

Bandopadhay, A., "A computational study of rigid motion perception," Ph.D.
thesis, Computer Science Dept., U. Rochester, September 1986.

Bandopadhay, A., "Perception of structure and motion of rigid objects," TR 169,
Computer Science Dept., U. Rochester, December 1985.

Bandopadhay, A. and J. Aloimonos, "Perception of motion of rigid objects," TR 169,
Computer Science Dept., U. Rochester, December 1985.

2

.. *.. . .. %2...

Bandopadhay, A. and J. Aloimonos, "Perception of rigid motion from
spatiotemporal derivatives of optical flow," TR 157, Computer Science Dept., U.
Rochester, March 1985.

Bandopadhay, A., and D.H. Ballard, "Visual navigation by tracking of
environmental points," SPIE Conf. on Artificial Intelligence, Orlando, FL, March
1986.

Bandopadhay, A., B. Chandra, and D.H. Ballard, "Egomotion perception using
active vision," Proc., IEEE Conf on Computer Vision Representation and Control,
Miami Beach, FL, June 1986.

Bandopadhay, A., B. Chandra, and D.H. Ballard, "Active navigation: tracking an
environmental point considered beneficial," IEEE Workshop in Motion
Representation and Analysis, Charleston, SC, May 1986.

Bandopadhay, A. and R. Dutta, "Measuring image motion in dynamic images,"
IEEE Workshop on Motion, Representation and Analysis, Charleston, SC, May
1986.

Bandopadhay A. and R. Dutta, "Measuring notion in dynamic images: a clustering

approach," 6th Canadian Conf. on Artificial Intelligence, Montreal, May 1986.

Brown, C.M., "Advances in Computer Vision," to appear in book to be published by
Lawrence Erlbaum Assoc., 1986.

Brown, C.M., "Space-efficient Hough transformation for object location," in E.
Wegman (Ed). Statistical Image Processing and Graphics. To appear, Marcel-
Dekker, 1986.

Brown, C.M., J. Aloimonos, M. Swain, P. Chou, and A. Basu, "Texture, contour,

shape and motion," submitted to Pattern Recognition Letters, September 1985.

Brown, C.M. and D.H. Ballard, "Vision: Biology challenges technology," invited
article, BYTE 10, 44, 245-261, April 1985.

Brown, C.M., C.S. Ellis, J.A. Feldman, S.A. Friedberg, and T.J. LeBlanc,
"Artificial intelligence research on the Butterfly multiprocessor," Proc., Workshop
on Al and Distributed Problem Solving, National Academy of Sciences,
Washington, DC, 109-118, May 1985.

Cooper, P.R., D.E. Friedman, and SA. Wood, "The automatic generation of digital
terrain models from satellite images by stereo," 36th Congress, Int. Astronautical
Federation, Stockholm; to appear, Acta Astronautica, 1986.

Fanty, M., "A connectionist simulator for the BBN Butterfly multiprocessor,"
Butterfly Project Report 2, Computer Science Dept., U. Rochester, January 1986.

Feldman, J.A. and C.M. Brown, "Recent progress of the Rochester image
understanding project," Proc., DARPA Image Understanding Workshop, Miami,
FL, December 1985.

3

Finkel, R.A., M.L. Scott, W.K. Kalsow, et al., "Experience with Charlotte:
Simplicity vs. function in a distributed operating system," Computer Sciences TR
653, U. Wisconsin-Madison, July 1986; for IEEE Workshop on Design Principles
for Experimental Distributed Systems, Purdue U., October 1986.

Friedberg, S.A., "A consistency protocol for highly available, replicated
databases," submitted, 5th Symp. on Reliabiloity in Distributed Software and
Database Systems, 1986.

Friedberg, S.A., "Finding axes of skewed symmetry," Computer Vision, Graphics,and Image Processing 34,138-145, 1986.

Friedberg, S.A., "Hierarchical processor composition," Proc., 14th ACM CS Con f.,
February 1986.

Friedberg, S.A., "HPC coding style guidelines," Hierarchical Process Composition
Project Report 1, Computer Science Dept., U. Rochester, May 1986.

Friedberg, S.A., "Interface structures," Hierarchical Process Composition Project
Report 5, Computer Science Dept., U. Rochester, August 1986.

Friedberg, S.A., "Symmetry evaluators" (revised), TR 134, Computer Science
Z Dept., U. Rochester, January 1986.

Friedberg, S.A., "User process-HPC interface--C language/UNIX host version,"
Hierarchical Process Composition Project Report 3, Computer Science Dept., U.
Rochester, August 1986.

Friedberg, SA. and G.L. Peterson, "An efficient solution to the mutual exclusion
problems using weak semaphores," submitted, Information Processing Letters,
1986.

Friedberg, S.A. and D.H. Pitcher, "HPC IPC implementation--unmodified UNIX
host version," Hierarchical Process Composition Project Report 2, Computer
Science Dept., U. Rochester, June 1986.

Friedberg, S.A. and I. Rigoutsos, "Comments on Stony Brook MP," Hierarchical
Process Composition Project Report 4, Computer Science Dept., U. Rochester, May
1986.

Hinkelman, E., "NET: A utility for building regular process networks on the BBN
Butterfly parallel processor," Butterfly Project Report 5, Computer Science Dept.,
U. Rochester, February 1986.

Hinkelman, E., "Pattern: A computational approach to quantifying coating
quality," Eastman Kodak Research Labs Technical Report, to appear, 1986.

Hollbach, S.C., "Tinker toy world; final report: the 2-d feature finder," forthcoming
TR, Computer Science Dept., U. Rochester, 1986.

4

'- ~ %!

LeBlanc, T.J., "Shared memory versus message-passing in a tightly-coupled
multiprocessor: A case study," Butterfly Project Report 3, Computer Science Dept.,
U. Rochester, January 1986; to appear, Proc., 1986 Int. Conf. on Parallel
Processing, August 1986.

LeBlanc, T.J. and L. Bukys, "Getting started with the BBN 'Butterfly
multiprocessor," Butterfly Project Report 1, Computer Science Dept., U.
Rochester, September 1985.

LeBlanc, T.J. and R.P. Cook, "High-level broadcast communication for local area
networks," IEEE Software, Special Issue on Experiences with Distributed
Systems, 40-48, May 1985.

LeBlanc, T.J. and S.A. Friedberg," Hierarchical process composition in distributed
operating systems," Proc., 5th Int. Conf. on Distributed Computing Systems,
Denver, CO, 26-34, May 1985.

LeBlanc, T.J. and S.A. Friedberg, "HPC: A model of structure and change in
distributed systems," TR 153, Computer Science Dept., U. Rochester, May 1985;
IEEE Trans. on Computers C-34,12,1114-1129,1985.

LeBlanc, T.J., N.M. Gaiter, and T. Ohkami, "SMP: a message-based programming
environment for the BBN Butterfly," Butterfly Project Report 8, Computer Science
Dept., U. Rochester, July 1986.

Mukerjee, A. and D.H. Ballard, "Self-calibration in robot manipulators," Proc.,
IEEE Workshop on Robotics, April 1985.

Narayanan, N.H. and C.M. Brown, "Parallel stereo correspondence on the
Butterfly Multiprocessor," forthcoming Butterfly Project Report, Computer
Science Dept., U. Rochester, to appear, 1986.

Narayanan, N.H. and N. Viswanadham, "A methodology for knowledge
acquisition and reasoning in failure analysis of systems," Proc., Symp. on Al in
Engineering, Washington, DC, October 1985; to appear, IEEE Trans. on Systems,
Man and Cybernetics, 1986.

Newman-Wolfe, R.E., "Communication issues in parallel processing," Ph.D.
thesis, Computer Science Dept., U. Rochester, September 1986.

Newman-Wolfe, R.E. (Ed), "Proceedings of 1986 Open House," TR 184, Computer
Science Dept., U. Rochester, March 1986.

Newman-Wolfe, R.E., "A set theoretic problem: a solution for the hypercube and
its applications," TR 171, Computer Science Dept., U. Rochester, October 1985.

Ohkami, T. and D. Baldwin, "he SEEDS simulator: User manual and report,"
Computer Science Dept., U. Rochester, to appear, 1986.

Olson, TJ.,"Modula-2 on the BBN Butterfly Multiprocessor", Butterfly Project
Report 4, Computer Science Dept., Univ. Rochester, January 1986.

5
UT

Rigoutsos, I. and C.M. Brown, "Camera calibration," TR 186, Computer Science
Dept., U. Rochester, to appear, 1986.

Sanchis, L.A., "Multiple-way network partitioning," TR 181, Computer Science
Dept., U. Rochester, March 1986.

Scott, M.L., "Design and implementation of a distributed systems language,"
Ph.D. thesis, TR 596, U. Wisconsin-Madison, May 1985.

Scott, M.L., 'The interface between distributed operating system and high-level
programming language," TR 182, Computer Science Dept., U. Rochester, January
1986; Butterfly Project Report 6, Computer Science Dept., U. Rochester, March
1986; Proc., 1986 Int. Conf. on Parallel Processing, St. Charles, IL, August 1986;
Computer Science/Engineering Research Review, U. Rochester, September 1986.

Scott, M.L., "Language support for loosely-coupled distributed programs," TR 183,
Computer Science Dept., U. Rochester, January 1986; IEEE Transactions on
Software Engineering, Special Issue on Distributed Computing, to appear,
December 1986.

Scott, M.L., "LYNX reference manual," Butterfly Project Report 7, Computer
Science Dept., U. Rochester, March 1986.

Scott, M.L. and R.A. Finkel, "A simple mechanism for type security across
compilation units," IEEE Transactions on Software Engineering, Special Issue on
Distributed Computing, to appear, December 1986.

Sher, D.B., "Developing and analyzing boundary detection operators using
probabilistic models," Proc., ACM Workshop on Uncertainty and Probability in
Artificial Intelligence, August 1985.

Sher, D.B., "Evidence combination for vision, using likelihood generators," Proc.,
DARPA Image Understanding Workshop, Miami, FL, December 1985.

Sher, D.B., "Optimal likelihood generators for edge detection under Gaussian
additive noise," TR 185, Computer Science Dept., U. Rochester, June 1986; Proc.,
IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, June 1986.

Sher, D.B., "Template matching on parallel architectures," TR 156, Computer
Science Dept., U. Rochester, July 1985.

Swain, M.J. and J.L. Mundy, "Experiments in using a theorem prover to prove and
develop geometrical theorems in computer vision," 1986 IEEE Int. Conf. on
Robotics and Automation, San Francisco, 280-285, April, 1986.

Swain, M.J., "Algorithms," Queen's Mathematical Communicator, Queen's
College, to appear, 1986.

6

Butterfly Project Reports:

1. "Getting started with the BBN Butterfly multiprocessor," by TJ. LeBlanc
and L. Bukys, September 1985.

2. "A connectionist simulator for the BBN Butterfly multiprocessor," by M.
Fanty, January 1986.

3. "Shared memory versus message-passing in a tightly-coupled
multiprocessor: A case study," by T.J. LeBlanc, August 1986.

4. "Modula-2 on the BBN Butterfly multiprocessor," by T.J. Olson, January
1986.

5. "NET: A utility for building regular process networks on the BBN Butterfly
parallel processor," by E. Hinkelman, February 1986.

6. "The interface between distributed operating system and high-level
programming language," by M.L. Scott, March 1986.

7. "LYNX reference manual," by M.L. Scott, March 1986.

8. "SMP: a message-based programming environment for the BBN Butterfly,"
by T.J. LeBlanc, N.M. Gafter, and T. Ohkami, July 1986.

"Parallel stereo correspondence on the Butterfly multiprocessor," by N.H.
Narayanan and C.M. Brown, to appear, 1986.

7

4 7

-r .- IN*1 -. 7 W

Hierarchical Process Composition Project Reports:

1. "HPC coding style guidelines," by S.A. Friedberg, May 1986.

2. "HPC [PC implementation--unmodified UNIX host version," by S.A.
Friedberg and D.H. Pitcher, June 1986.

3. "User process--HPC interface--C language/UNIX host version," by S.A.
Friedberg, August 1986.

4. "Comments on Stony Brook MP," by S.A. Friedberg and I. Rigoutsos, May
1986.

5. "Interface structures," by S.A. Friedberg, August 1986.

8

.i . . ** *

~ .-. * .* ~ . - - - -

* .4

- .4.

tm1.
4.

4

4.

~4 .3.

'U 'U

-. 4...

4.

.1*

.~- .4

-'.4

1%

_________ 4~.4

* r 3 r* r V. -. f. .* . ** . - . -.

~ .

44~*~* *. . . .

